

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021 Course: B. Tech. Semester: 6th **Department: Civil Engineering** Faculty name: Er. Amit Kaushik Subject: ACS, PEC-CEEL-308-G Name of the Faculty Er. Amit Kaushik : Discipline **Civil Engineering** : 6^{TH} Semester : Subject ACS (PEC-CEEL-308-G) : **Lesson Plan Duration** 15 Weeks (From JUNE- SEPT 2021) : Work load (Lectures/Practical) **Per week (in hours)** Lectures-04 :

WEEK	LECTURE	TOPIC COVERED / ASSIGNMENT GIVEN
	1^{st}	General Overview of Subject
	2 nd	Continuous Beams-Basic assumptions, Moment of inertia.
et	3 rd	Settlements, Modification of moments, maximum moments and
01*		shear
	4 th	Design examples
	1^{st}	Beams curved in plan-analysis for torsion
02 nd	2 nd	Redistribution of moments for single and multi-span beams,
		design examples.
	3 rd	Redistribution of moments for multi-span beams
	4 th	Design examples
	1^{st}	Flat slabs-Advantages of flat slabs, general design considerations
03 ^{ra}	2^{nd}	Approximate direct design method
	3 rd	Approximate direct design method- design of flat slabs
	4 th	Openings in flat slab
41	1^{st}	Doubt Session & Quick revision
04 th	2^{nd}	
	3 rd	Assignment - 1
	4 th	Staircases
41	1^{st}	Various Types of Staircases
05 th	2^{nd}	Design of various types of staircases
	3 rd	Design examples
	4 th	Solving Assignment & Doubts
41	1 st	Assignment -2
06 th	2 nd	Design Concepts of Liquid Retaining Structures

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021 Department: Civil Engineering Subject: ACS, PEC-CEEL-308-G

Course: B. Tech. Semester: 6th Faculty name: Er. Amit Kaushik

	3 rd	Water Tanks -Estimation of Wind and earthquake forces
	4 th	Design requirements for rectangular tank
	1 st	Design examples
	2 nd	Design requirements for cylindrical underground tanks
07 th	3 rd	Design examples
	4 th	Design requirements for Overhead tanks
	1^{st}	Design examples
08 th	2^{nd}	Silos and Bunkers-Various theories
	3 rd	Bunkers with sloping bottoms and with high sidewalls, battery of
		bunkers, design examples
	4 th	Design examples
	1 st	Analysis and design of sections for flexure and shear
	2^{nd}	Load balancing concept, IS Specifications.
9 th	3 rd	End blocks-Analysis of stresses, Magnel's method,
	4 th	Guyon's method, Bursting and spalling stresses,
	1^{st}	Design examples
	2^{nd}	Building Frames-Introduction, Member stiffnesses,
10 th	3 rd	, Loads, Analysis for vertical and lateral loads,
	4 th	Design examples
	1 st	Torsion in buildings, Ductility of beams,
11 th	2^{nd}	Design and detailing for ductility, design examples.
	3 rd	Yield Line Theory-Basic assumptions, Methods of analysis
	4 th	Yield line patterns and failure mechanisms
	1 st	Analysis of one way rectangular and non-rectangular slabs
12 th	2 nd	Analysis of two way rectangular and non-rectangular slabs
	3 rd	Design examples
	4 th	Effect of top corner steel in square slabs
	1 st	Types of Joints, Joints in Multi-Storied Buildings,
13 th	2 nd	Forces Acting on Joints, Design of Joints for Strength
	3 rd	Anchorage Requirement in Joints
	4 th	Detailing of Reinforcement in Joints.
	1 st	Examples
4	2 nd	Revision and doubt classes
14 th	3 rd	
	4 th	
	1 st	Revision and doubt classes
15 th	2 nd	

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2021 Department: Civil Engineering Subject: ACS, PEC-CEEL-308-G

Course: B. Tech. Semester: 6th Faculty name: Er. Amit Kaushik

3 rd	
4 th	